Category Archives: digital technologies

A World Without IT4IT: Why It’s Time to Run IT Like a Business

By Dave Lounsbury, CTO, The Open Group

IT departments today are under enormous pressure. In the digital world, businesses have become dependent on IT to help them remain competitive. However, traditional IT departments have their roots in skills such as development or operations and have not been set up to handle a business and technology environment that is trying to rapidly adapt to a constantly changing marketplace. As a result, many IT departments today may be headed for a crisis.

At one time, IT departments led technology adoption in support of business. Once a new technology was created—departmental servers, for instance—it took a relatively long time before businesses took advantage of it and even longer before they became dependent on the technology. But once a business did adopt the technology, it became subject to business rules—expectations and parameters for reliability, maintenance and upgrades that kept the technology up to date and allowed the business it supported to keep up with the market.

As IT became more entrenched in organizations throughout the 1980s and 1990s, IT systems increased in size and scope as technology companies fought to keep pace with market forces. In large enterprises, in particular, IT’s function became to maintain large infrastructures, requiring small armies of IT workers to sustain them.

A number of forces have combined to change all that. Today, most businesses do their business operations digitally—what Constellation Research analyst Andy Mulholland calls “Front Office Digital Business.” Technology-as-a-service models have changed how the technologies and applications are delivered and supported, with support and upgrades coming from outsourced vendors, not in-house staff. With Cloud models, an IT department may not even be necessary. Entrepreneurs can spin up a company with a swipe of a credit card and have all the technology they need at their fingertips, hosted remotely in the Cloud.

The Gulf between IT and Business

Although the gap between IT and business is closing, the gulf in how IT is run still remains. In structure, most IT departments today remain close to their technology roots. This is, in part, because IT departments are still run by technologists and engineers whose primary skills lie in the challenge (and excitement) of creating new technologies. Not every skilled engineer makes a good businessperson, but in most organizations, people who are good at their jobs often get promoted into management whether or not they are ready to manage. The Peter Principle is a problem that hinders many organizations, not just IT departments.

What has happened is that IT departments have not traditionally been run as if they were a business. Good business models for how IT should be run have been piecemeal or slow to develop—despite IT’s role in how the rest of the business is run. Although some standards have been developed as guides for how different parts of IT should be run (COBIT for governance, ITIL for service management, TOGAF®, an Open Group standard, for architecture), no overarching standard has been developed that encompasses how to holistically manage all of IT, from systems administration to development to management through governance and, of course, staffing. For all its advances, IT has yet to become a well-oiled business machine.

The business—and technological—climate today is not the same as it was when companies took three years to do a software upgrade. Everything in today’s climate happens nearly instantaneously. “Convergence” technologies like Cloud Computing, Big Data, social media, mobile and the Internet of Things are changing the nature of IT. New technical skills and methodologies are emerging every day, as well. Although languages such as Java or C may remain the top programming languages, new languages like Pig or Hive are emerging everyday, as are new approaches to development, such as Scrum, Agile or DevOps.

The Consequences of IT Business as Usual

With these various forces facing IT, departments will either need to change and adopt a model where IT is managed more effectively or departments may face some impending chaos that ends up hindering their organizations.

Without an effective management model for IT, companies won’t be able to mobilize quickly for a digital age. Even something as simple as an inability to utilize data could result in problems such as investing in a product prototype that customers aren’t interested in. Those are mistakes most companies can’t afford to make these days.

Having an umbrella view of what all of IT does also allows the department to make better decisions. With technology and development trends changing so quickly, how do you know what will fit your organization’s business goals? You want to take advantage of the trends or technologies that make sense for the company and leave behind those that don’t.

For example, in DevOps, one of the core concepts is to bring the development phase into closer alignment with releasing and operating the software. You need to know your business’s operating model to determine whether this approach will actually work or not. Having a sense of that also allows IT to make decisions about whether it’s wise to invest in training or hiring staff skilled in those methods or buying new technologies that will allow you to adopt the model.

Not having that management view can leave companies subject to the whims of technological evolution and also to current IT fads. If you don’t know what’s valuable to your business, you run the risk of chasing every new fad that comes along. There’s nothing worse—as the IT guy—than being the person who comes to the management meeting each month saying you’re trying yet another new approach to solve a problem that never seems to get solved. Business people won’t respond to that and will wonder if you know what you’re doing. IT needs to be decisive and choose wisely.

These issues not only affect the IT department but to trickle up to business operations. Ineffective IT shops will not know when to invest in the correct technologies, and they may miss out on working with new technologies that could benefit the business. Without a framework to plan how technology fits into the business, you could end up in the position of having great IT bows and arrows but when you walk out into the competitive world, you get machine-gunned.

The other side is cost and efficiency—if the entire IT shop isn’t running smoothly throughout then you end up spending too much money on problems, which in turn takes money away from other parts of the business that can keep the organization competitive. Failing to manage IT can lead to competitive loss across numerous areas within a business.

A New Business Model

To help prevent the consequences that may result if IT isn’t run more like a business, industry leaders such as Accenture; Achmea; AT&T; HP IT; ING Bank; Munich RE; PwC; Royal Dutch Shell; and University of South Florida, recently formed a consortium to address how to better run the business of IT. With billions of dollars invested in IT each year, these companies realized their investments must be made wisely and show governable results in order succeed.

The result of their efforts is The Open Group IT4IT™ Forum, which released a Snapshot of its proposed Reference Architecture for running IT more like a business this past November. The Reference Architecture is meant to serve as an operating model for IT, providing the “missing link” that previous IT-function specific models have failed to address. The model allows IT to achieve the same level of business, discipline, predictability and efficiency as other business functions.

The Snapshot includes a four-phase Value Chain for IT that provides both an operating model for an IT business and outlines how value can be added at every stage of the IT process. In addition to providing suggested best practices for delivery, the Snapshot includes technical models for the IT tools that organizations can use, whether for systems monitoring, release monitoring or IT point solutions. Providing guidance around IT tools will allow these tools to become more interoperable so that they can exchange information at the right place at the right time. In addition, it will allow for better control of information flow between various parts of the business through the IT shop, thus saving IT departments the time and hassle of aggregating tools or cobbling together their own tools and solutions. Staffing guidance models are also included in the Reference Architecture.

Why IT4IT now? Digitalization cannot be held back, particularly in an era of Cloud, Big Data and an impending Internet of Things. An IT4IT Reference Architecture provides more than just best practices for IT—it puts IT in the context of a business model that allows IT to be a contributing part of an enterprise, providing a roadmap for digital businesses to compete and thrive for years to come.

Join the conversation! @theopengroup #ogchat

By The Open GroupDavid is Chief Technical Officer (CTO) and Vice President, Services for The Open Group. As CTO, he ensures that The Open Group’s people and IT resources are effectively used to implement the organization’s strategy and mission.  As VP of Services, David leads the delivery of The Open Group’s proven collaboration processes for collaboration and certification both within the organization and in support of third-party consortia.

David holds a degree in Electrical Engineering from Worcester Polytechnic Institute, and is holder of three U.S. patents.

2 Comments

Filed under Cloud, digital technologies, Enterprise Transformation, Internet of Things, IT, IT4IT, TOGAF, TOGAF®

Catching Up with The Open Group Internet of Things Work Group

By The Open Group

The Open Group’s Internet of Things (IoT) Work Group is involved in developing open standards that will allow product and equipment management to evolve beyond the traditional limits of product lifecycle management. Meant to incorporate the larger systems management that will be required by the IoT, these standards will help to handle the communications needs of a network that may encompass products, devices, people and multiple organizations. Formerly known as the Quantum Lifecycle Management (QLM) Work Group, its name was recently changed to the Internet of Things Work Group to more accurately reflect its current direction and focus.

We recently caught up with Work Group Chairman Kary Främling to discuss its two new standards, both of which are geared toward the Internet of Things, and what the group has been focused on lately.

Over the past few years, The Open Group’s Internet of Things Work Group (formerly the Quantum Lifecycle Management Work Group) has been working behind the scenes to develop new standards related to the nascent Internet of Things and how to manage the lifecycle of these connected products, or as General Electric has referred to it, the “Industrial Internet.”

What their work ultimately aims to do is help manage all the digital information within a particular system—for example, vehicles, buildings or machines. By creating standard frameworks for handling this information, these systems and their related applications can be better run and supported during the course of their “lifetime,” with the information collected serving a variety of purposes, from maintenance to improved design and manufacturing to recycling and even refurbishing them.

According to Work Group Chairman Kary Främling, CEO of ControlThings and Professor of Practice in Building Information Modeling at Aalto University in Finland, the group has been working with companies such as Caterpillar and Fiat, as well as refrigerator and machine tool manufacturers, to enable machines and equipment to send sensor and status data on how machines are being used and maintained to their manufacturers. Data can also be provided to machine operators so they are also aware of how the machines are functioning in order to make changes if need be.

For example, Främling says that one application of this system management loop is in HVAC systems within buildings. By building Internet capabilities into the system, now a ventilation system—or air-handling unit—can be controlled via a smartphone from the moment it’s turned on inside a building. The system can provide data and alerts to facilities management about how well it’s operating and whether there are any problems within the system to whomever needs it. Främling also says that the system can provide information to both the maintenance company and the system manufacturer so they can collect information from the machines on performance, operations and other indicators. This allows users to determine things as simple as when an air filter may need changing or whether there are systematic problems with different machine models.

According to Främling, the ability to monitor systems in this way has already helped ventilation companies make adjustments to their products.

“What we noticed was there was a certain problem with certain models of fans in these machines. Based on all the sensor readings on the machine, I could deduce that the air extraction fan had broken down,” he said.

The ability to detect such problems via sensor data as they are happening can be extremely beneficial to manufacturers because they can more easily and more quickly make improvements to their systems. Another advantage afforded by machines with Web connectivity, Främling says, is that errors can also be corrected remotely.

“There’s so much software in these machines nowadays, so just by changing parameters you can make them work better in many ways,” he says.

In fact, Främling says that the Work Group has been working on systems such as these for a number of years already—well before the term “Internet of Things” became part of industry parlance. They first worked on a system for a connected refrigerator in 2007 and even worked on systems for monitoring how vehicles were used before then.

One of the other things the Work Group is focused on is working with the Open Platform 3.0 Forum since there are many synergies between the two groups. For instance, the Work Group provided a number of the uses cases for the Forum’s recent business scenarios.

“I really see what we are doing is enabling the use cases and these information systems,” Främling says.

Two New Standards

In October, the Work Group also published two new standards, both of which are two of the first standards to be developed for the Internet of Things (IoT). A number of companies and universities across the world have been instrumental in developing the standards including Aalto University in Finland, BIBA, Cambridge University, Infineon, InMedias, Politechnico di Milano, Promise Innovation, SAP and Trackway Ltd.

Främling likens these early IoT standards to what the HTML and HTTP protocols did for the Internet. For example, the Open Data Format (O-DF) Standard provides a common language for describing any kind of IoT object, much like HTML provided a language for the Web. The Open Messaging Interface (O-MI) Standard, on the other hand, describes a set of operations that enables users to read information about particular systems and then ask those systems for that information, much like HTTP. Write operations then allow users to also send information or new values to the system, for example, to update the system.

Users can also subscribe to information contained in other systems. For instance, Främling described a scenario in which he was able to create a program that allowed him to ask his car what was wrong with it via a smartphone when the “check engine” light came on. He was then able to use a smartphone application to send an O-MI message to the maintenance company with the error code and his location. Using an O-MI subscription the maintenance company would be able to send a message back asking for additional information. “Send these five sensor values back to us for the next hour and you should send them every 10 seconds, every 5 seconds for the temperature, and so on,” Främling said. Once that data is collected, the service center can analyze what’s wrong with the vehicle.

Främling says O-MI messages can easily be set up on-the-fly for a variety of connected systems with little programming. The standard also allows users to manage mobility and firewalls. O-MI communications are also run over systems that are already secure to help prevent security issues. Those systems can include anything from HTTP to USB sticks to SMTP, as well, Främling says.

Främling expects that these standards can also be applied to multiple types of functionalities across different industries, for example for connected systems in the healthcare industry or to help manage energy production and consumption across smart grids. With both standards now available, the Work Group is beginning to work on defining extensions for the Data Format so that vocabularies specific to certain industries, such as healthcare or manufacturing, can also be developed.

In addition, Främling expects that as protocols such as O-MI make it easier for machines to communicate amongst themselves, they will also be able to begin to optimize themselves over time. Cars, in fact, are already using this kind of capability, he says. But for other systems, such as buildings, that kind of communication is not happening yet. He says in Finland, his company has projects underway with manufacturers of diesel engines, cranes, elevators and even in Volkswagen factories to establish information flows between systems. Smart grids are also another potential use. In fact his home is wired to provide consumption rates in real-time to the electric company, although he says he does not believe they are currently doing anything with the data.

“In the past we used to speak about these applications for pizza or whatever that can tell a microwave oven how long it should be heated and the microwave oven also checks that the food hasn’t expired,” Främling said.

And while your microwave may not yet be able to determine whether your food has reached its expiration date, these recent developments by the Work Group are helping to bring the IoT vision to fruition by making it easier for systems to begin the process of “talking” to each other through a standardized messaging system.

By The Open GroupKary Främling is currently CEO of the Finnish company ControlThings, as well as Professor of Practice in Building Information Modeling (BIM) at Aalto University, Finland. His main research topics are on information management practices and applications for BIM and product lifecycle management in general. His main areas of competence are distributed systems, middleware, multi-agent systems, autonomously learning agents, neural networks and decision support systems. He is one of the worldwide pioneers in the Internet of Things domain, where he has been active since 2000.

@theopengroup; #ogchat

1 Comment

Filed under digital technologies, Enterprise Transformation, Future Technologies, Internet of Things, Open Platform 3.0, Uncategorized

The Open Group London 2014: Eight Questions on Retail Architecture

By The Open Group

If there’s any vertical sector that has been experiencing constant and massive transformation in the ages of the Internet and social media, it’s the retail sector. From the ability to buy goods whenever and however you’d like (in store, online and now, through mobile devices) to customers taking to social media to express their opinions about brands and service, retailers have a lot to deal with.

Glue Reply is a UK-based consulting firm that has worked with some of Europe’s largest retailers to help them plan their Enterprise Architectures and deal with the onslaught of constant technological change. Glue Reply Partner Daren Ward and Senior Consultant Richard Veryard sat down recently to answer our questions about how the challenges of building architectures for the retail sector, the difficulties of seasonal business and the need to keep things simple and agile. Ward spoke at The Open Group London 2014 on October 20.

What are some of the biggest challenges facing the retail industry right now?

There are a number of well-documented challenges facing the retail sector. Retailers are facing new competitors, especially from discount chains, as well as online-only retailers such as Amazon. Retailers are also experiencing an increasing fragmentation of spend—for example, grocery customers buying smaller quantities more frequently.

At the same time, the customer expectations are higher, especially across multiple channels. There is an increased intolerance of poor customer service, and people’s expectations of prompt response is increasing rapidly, especially via social media.

There is also an increasing concern regarding cost. Many retailers have huge amounts invested in physical space and human resources. They can’t just keep increasing these costs, they must understand how to become more efficient and create new ways to make use of these resources.

What role is technology playing in those changes, and which technologies are forcing the most change?

New technologies are allowing us to provide shoppers with a personalized customer experience more akin to an old school type service like when the store manager knew my name, my collar size, etc. Combining technologies such as mobile and iBeacons is allowing us to not only reach out to our customers, but to also provide a context and increase relevance.

Some retailers are becoming extremely adept in using social media. The challenge here is to link the social media with the business process, so that the customer service agent can quickly check the relevant stock position and reserve the stock before posting a response on Facebook.

Big data is becoming one of the key technology drivers. Large retailers are able to mobilize large amounts of data, both from their own operations as well as external sources. Some retailers have become highly data-driven enterprises, with the ability to make rapid adjustments to marketing campaigns and physical supply chains. As we gather more data from more devices all plugged into the Internet of Things (IoT), technology can help us make sense of this data and spot trends we didn’t realize existed.

What role can Enterprise Architecture play in helping retailers, and what can retailers gain from taking an architectural approach to their business?

One of the key themes of the digital transformation is the ability to personalize the service, to really better understand our customers and to hold a conversation with them that is meaningful. We believe there are four key foundation blocks to achieving this seamless digital transformation: the ability to change, to integrate, to drive value from data and to understand the customer journey. Core to the ability to change is a business-driven roadmap. It provides all involved with a common language, a common set of goals and a target vision. This roadmap is not a series of hurdles that must be delivered, but rather a direction of travel towards the target allowing us to assess the impact of course corrections as we go and ensure we are still capable of arriving at our destination. This is how we create an agile environment, where tactical changes are still simple course corrections continuing on the right direction of travel.

Glue Reply provides a range of architecture services to our retail clients, from capability led planning to practical development of integration solutions. For example, we produced a five-year roadmap for Sainsbury’s, which allows IT investment to combine longer-term foundation projects with short-term initiatives that can respond rapidly to customer demand.

Are there issues specific to the retail sector that are particularly challenging to deal with in creating an architecture and why?

Retail is a very seasonal business—sometimes this leaves a very small window for business improvements. This also exaggerates the differences in the business and IT lifecycles. The business strategy can change at a pace often driven by external factors, whilst elements of IT have a lifespan of many years. This is why we need a roadmap—to assess the impact of these changes and re-plan and prioritize our activities.

Are there some retailers that you think are doing a good job of handling these technology challenges? Which ones are getting it right?

Our client John Lewis has just been named ‘Omnichannel Retailer of the Year’ at the World Retail Awards 2014. They have a vision, and they can assess the impact of change. We have seen similar success at Sainsbury’s, where initiatives such as brand match are brought to market with real pace and quality.

How can industry standards help to support the retail industry?

Where appropriate, we have used industry standards such as the ARTS (Association for Retail Standards) data model to assist our clients in creating a version that is good enough. But mostly, we use our own business reference models, which we have built up over many years of experience working with a range of different retail businesses.

What can other industries learn from how retailers are incorporating architecture into their operations?

The principle of omnichannel has a lot of relevance for other consumer-facing organizations, but also retail’s focus on loyalty. It’s not about creating a sale stampede, it’s about the brand. Apple is clearly an excellent example—when people queue for hours to be the first to buy the new product, at a price that will only reduce over time. Some retailers are making great use of customer data and profiling. And above, all successful retailers understand three key architectural principles that will drive success in any other sector—keep it simple, drive value and execute well.

What can retailers do to continue to best meet customer expectations into the future?

It’s no longer about the channel, it’s about the conversation. We have worked with the biggest brands in Europe, helping them deliver multichannel solutions that consider the conversation. The retailer that enables this conversation will better understand their customers’ needs and build long-term relationships.

By The Open GroupDaren Ward is a Partner at Reply in the UK. As well as being a practicing Enterprise Architecture, Daren is responsible for the development of the Strategy and Architecture business as well as playing a key role in driving growth of Reply in the UK. He is committed to helping organizations drive genuine business value from IT investments, working with both commercial focused business units and IT professionals.  Daren has helped establish Architecture practices at many organizations. Be it enterprise, solutions, integration or information architecture, he has helped these practices delivery real business value through capability led architecture and business-driven roadmaps.

 

RichardVeryard 2 June 2014Richard Veryard is a Business Architect and author, specializing in capability-led planning, systems thinking and organizational intelligence. Last year, Richard joined Glue Reply as a senior consultant in the retail sector.

 

Comments Off on The Open Group London 2014: Eight Questions on Retail Architecture

Filed under big data, Business Architecture, digital technologies, Enterprise Architecture, Internet of Things, Uncategorized

Open FAIR Blog Series – Five Reasons You Should Use the Open FAIR Body of Knowledge

By Jim Hietala, VP, Security and Andrew Josey, Director of Standards, The Open Group

This is the second in our blog series introducing the Open FAIR Body of Knowledge.

In this blog, we provide 5 reasons why you should use the Open FAIR Body of Knowledge for Risk Analysis:

1. Emphasis on Risk

Often the emphasis in such analyses is placed on security threats and controls, without due consideration of impact.  For example, we have a firewall protecting all our customer information – but what if the firewall is breached and the customer information stolen or changed? Risk analysis using Open FAIR evaluates both the probability that bad things will happen, and the impact if they do happen. By using the Open FAIR Body of Knowledge, the analyst measures and communicates the risk, which is what management cares about.

2. Logical and Rational Framework

It provides a framework that explains the how and why of risk analysis. It improves consistency in undertaking analyses.

3. Quantitative

It’s easy to measure things without considering the risk context – for example, the systems should be maintained in full patch compliance – but what does that mean in terms of loss frequency or the magnitude of loss? The Open FAIR taxonomy and method provide the basis for meaningful metrics.

4. Flexible

Open FAIR can be used at different levels of abstraction to match the need, the available resources, and available data.

5. Rigorous

There is often a lack of rigor in risk analysis: statements are made such as: “that new application is high risk, we could lose millions …” with no formal rationale to support them. The Open FAIR risk analysis method provides a more rigorous approach that helps to reduce gaps and analyst bias. It improves the ability to defend conclusions and recommendations.

In our next blog, we will look at how the Open FAIR Body of Knowledge can be used with other Open Group standards.

The Open FAIR Body of Knowledge consists of the following Open Group standards:

  • Risk Taxonomy (O-RT), Version 2.0 (C13K, October 2013) defines a taxonomy for the factors that drive information security risk – Factor Analysis of Information Risk (FAIR).
  • Risk Analysis (O-RA) (C13G, October 2013) describes process aspects associated with performing effective risk analysis.

These can be downloaded from The Open Group publications catalog at http://www.opengroup.org/bookstore/catalog.

Our other publications include a Pocket Guide and a Certification Study Guide.

62940-hietalaJim Hietala, CISSP, GSEC, is the Vice President, Security for The Open Group, where he manages all IT Security, Risk Management and Healthcare programs and standards activities. He participates in the SANS Analyst/Expert program and has also published numerous articles on Information Security, Risk Management, and compliance topics in publications including The ISSA Journal, Bank Accounting & Finance, Risk Factor, SC Magazine, and others.

 

andrew-small1Andrew Josey is Director of Standards within The Open Group. He is currently managing the standards process for The Open Group, and has recently led the standards development projects for TOGAF® 9.1, ArchiMate® 2.0, IEEE Std 1003.1-2008 (POSIX), and the core specifications of the Single UNIX® Specification, Version 4. Previously, he has led the development and operation of many of The Open Group certification development projects, including industry-wide certification programs for the UNIX system, the Linux Standard Base, TOGAF, and IEEE POSIX. He is a member of the IEEE, USENIX, UKUUG, and the Association of Enterprise Architects.

Comments Off on Open FAIR Blog Series – Five Reasons You Should Use the Open FAIR Body of Knowledge

Filed under Data management, digital technologies, Information security, Open FAIR Certification, RISK Management, Security, Uncategorized

The Open Group London 2014 Preview: A Conversation with RTI’s Stan Schneider about the Internet of Things and Healthcare

By The Open Group

RTI is a Silicon Valley-based messaging and communications company focused on helping to bring the Industrial Internet of Things (IoT) to fruition. Recently named “The Most Influential Industrial Internet of Things Company” by Appinions and published in Forbes, RTI’s EMEA Manager Bettina Swynnerton will be discussing the impact that the IoT and connected medical devices will have on hospital environments and the Healthcare industry at The Open Group London October 20-23. We spoke to RTI CEO Stan Schneider in advance of the event about the Industrial IoT and the areas where he sees Healthcare being impacted the most by connected devices.

Earlier this year, industry research firm Gartner declared the Internet of Things (IoT) to be the most hyped technology around, having reached the pinnacle of the firm’s famed “Hype Cycle.”

Despite the hype around consumer IoT applications—from FitBits to Nest thermostats to fashionably placed “wearables” that may begin to appear in everything from jewelry to handbags to kids’ backpacks—Stan Schneider, CEO of IoT communications platform company RTI, says that 90 percent of what we’re hearing about the IoT is not where the real value will lie. Most of media coverage and hype is about the “Consumer” IoT like Google glasses or sensors in refrigerators that tell you when the milk’s gone bad. However, most of the real value of the IoT will take place in what GE has coined as the “Industrial Internet”—applications working behind the scenes to keep industrial systems operating more efficiently, says Schneider.

“In reality, 90 percent of the real value of the IoT will be in industrial applications such as energy systems, manufacturing advances, transportation or medical systems,” Schneider says.

However, the reality today is that the IoT is quite new. As Schneider points out, most companies are still trying to figure out what their IoT strategy should be. There isn’t that much active building of real systems at this point.

Most companies, at the moment, are just trying to figure out what the Internet of Things is. I can do a webinar on ‘What is the Internet of Things?’ or ‘What is the Industrial Internet of Things?’ and get hundreds and hundreds of people showing up, most of whom don’t have any idea. That’s where most companies are. But there are several leading companies that very much have strategies, and there are a few that are even executing their strategies, ” he said. According to Schneider, these companies include GE, which he says has a 700+ person team currently dedicated to building their Industrial IoT platform, as well as companies such as Siemens and Audi, which already have some applications working.

For its part, RTI is actively involved in trying to help define how the Industrial Internet will work and how companies can take disparate devices and make them work with one another. “We’re a nuts-and-bolts, make-it-work type of company,” Schneider notes. As such, openness and standards are critical not only to RTI’s work but to the success of the Industrial IoT in general, says Schneider. RTI is currently involved in as many as 15 different industry standards initiatives.

IoT Drivers in Healthcare

Although RTI is involved in IoT initiatives in many industries, from manufacturing to the military, Healthcare is one of the company’s main areas of focus. For instance, RTI is working with GE Healthcare on the software for its CAT scanner machines. GE chose RTI’s DDS (data distribution service) product because it will let GE standardize on a single communications platform across product lines.

Schneider says there are three big drivers that are changing the medical landscape when it comes to connectivity: the evolution of standalone systems to distributed systems, the connection of devices to improve patient outcome and the replacement of dedicated wiring with networks.

The first driver is that medical devices that have been standalone devices for years are now being built on new distributed architectures. This gives practitioners and patients easier access to the technology they need.

For example, RTI customer BK Medical, a medical device manufacturer based in Denmark, is in the process of changing their ultrasound product architecture. They are moving from a single-user physical system to a wirelessly connected distributed design. Images will now be generated in and distributed by the Cloud, thus saving significant hardware costs while making the systems more accessible.

According to Schneider, ultrasound machine architecture hasn’t really changed in the last 30 or 40 years. Today’s ultrasound machines are still wheeled in on a cart. That cart contains a wired transducer, image processing hardware or software and a monitor. If someone wants to keep an image—for example images of fetuses in utero—they get carry out physical media. Years ago it was a Polaroid picture, today the images are saved to CDs and handed to the patient.

In contrast, BK’s new systems will be completely distributed, Schneider says. Doctors will be able to carry a transducer that looks more like a cellphone with them throughout the hospital. A wireless connection will upload the imaging data into the cloud for image calculation. With a distributed scenario, only one image processing system may be needed for a hospital or clinic. It can even be kept in the cloud off-site. Both patients and caregivers can access images on any display, wherever they are. This kind of architecture makes the systems much cheaper and far more efficient, Schneider says. The days of the wheeled-in cart are numbered.

The second IoT driver in Healthcare is connecting medical devices together to improve patient outcomes. Most hospital devices today are completely independent and standalone. So, if a patient is hooked up to multiple monitors, the only thing that really “connects” those devices today is a piece of paper at the end of a hospital bed that shows how each should be functioning. Nurses are supposed to check these devices on an hourly basis to make sure they’re working correctly and the patient is ok.

Schneider says this approach is error-ridden. First, the nurse may be too busy to do a good job checking the devices. Worse, any number of things can set off alarms whether there’s something wrong with the patient or not. As anyone who has ever visited a friend or relative in the hospital attest to, alarms are going off constantly, making it difficult to determine when someone is really in distress. In fact, one of the biggest problems in hospital settings today, Schneider says, is a phenomenon known as “alarm fatigue.” Single devices simply can’t reliably tell if there’s some minor glitch in data or if the patient is in real trouble. Thus, 80% of all device alarms in hospitals are turned off. Meaningless alarms fatigue personnel, so they either ignore or turn off the alarms…and people can die.

To deal with this problem, new technologies are being created that will connect devices together on a network. Multiple devices can then work in tandem to really figure out when something is wrong. If the machines are networked, alarms can be set to go off only when multiple distress indicators are indicated rather than just one. For example, if oxygen levels drop on both an oxygen monitor on someone’s finger and on a respiration monitor, the alarm is much more likely a real patient problem than if only one source shows a problem. Schneider says the algorithms to fix these problems are reasonably well understood; the barrier is the lack of networking to tie all of these machines together.

The third area of change in the industrial medical Internet is the transition to networked systems from dedicated wired designs. Surgical operating rooms offer a good example. Today’s operating room is a maze of wires connecting screens, computers, and video. Videos, for instance, come from dynamic x-ray imaging systems, from ultrasound navigation probes and from tiny cameras embedded in surgical instruments. Today, these systems are connected via HDMI or other specialized cables. These cables are hard to reconfigure. Worse, they’re difficult to sterilize, Schneider says. Thus, the surgical theater is hard to configure, clean and maintain.

In the future, the mesh of special wires can be replaced by a single, high-speed networking bus. Networks make the systems easier to configure and integrate, easier to use and accessible remotely. A single, easy-to-sterilize optical network cable can replace hundreds of wires. As wireless gets faster, even that cable can be removed.

“By changing these systems from a mesh of TV-cables to a networked data bus, you really change the way the whole system is integrated,” he said. “It’s much more flexible, maintainable and sharable outside the room. Surgical systems will be fundamentally changed by the Industrial IoT.”

IoT Challenges for Healthcare

Schneider says there are numerous challenges facing the integration of the IoT into existing Healthcare systems—from technical challenges to standards and, of course, security and privacy. But one of the biggest challenges facing the industry, he believes, is plain old fear. In particular, Schneider says, there is a lot of fear within the industry of choosing the wrong path and, in effect, “walking off a cliff” if they choose the wrong direction. Getting beyond that fear and taking risks, he says, will be necessary to move the industry forward, he says.

In a practical sense, the other thing currently holding back integration is the sheer number of connected devices currently being used in medicine, he says. Manufacturers each have their own systems and obviously have a vested interest in keeping their equipment in hospitals, so many have been reluctant to develop or become standards-compliant and push interoperability forward, Schneider says.

This is, of course, not just a Healthcare issue. “We see it in every single industry we’re in. It’s a real problem,” he said.

Legacy systems are also a problematic area. “You can’t just go into a Kaiser Permanente and rip out $2 billion worth of equipment,” he says. Integrating new systems with existing technology is a process of incremental change that takes time and vested leadership, says Schneider.

Cloud Integration a Driver

Although many of these technologies are not yet very mature, Schneider believes that the fundamental industry driver is Cloud integration. In Schneider’s view, the Industrial Internet is ultimately a systems problem. As with the ultrasound machine example from BK Medical, it’s not that an existing ultrasound machine doesn’t work just fine today, Schneider says, it’s that it could work better.

“Look what you can do if you connect it to the Cloud—you can distribute it, you can make it cheaper, you can make it better, you can make it faster, you can make it more available, you can connect it to the patient at home. It’s a huge system problem. The real overwhelming striking value of the Industrial Internet really happens when you’re not just talking about the hospital but you’re talking about the Cloud and hooking up with practitioners, patients, hospitals, home care and health records. You have to be able to integrate the whole thing together to get that ultimate value. While there are many point cases that are compelling all by themselves, realizing the vision requires getting the whole system running. A truly connected system is a ways out, but it’s exciting.”

Open Standards

Schneider also says that openness is absolutely critical for these systems to ultimately work. Just as agreeing on a standard for the HTTP running on the Internet Protocol (IP) drove the Web, a new device-appropriate protocol will be necessary for the Internet of Things to work. Consensus will be necessary, he says, so that systems can talk to each other and connectivity will work. The Industrial Internet will push that out to the Cloud and beyond, he says.

“One of my favorite quotes is from IBM, he says – IBM said, ‘it’s not a new Internet, it’s a new Web.’” By that, they mean that the industry needs new, machine-centric protocols to run over the same Internet hardware and base IP protocol, Schneider said.

Schneider believes that this new web will eventually evolve to become the new architecture for most companies. However, for now, particularly in hospitals, it’s the “things” that need to be integrated into systems and overall architectures.

One example where this level of connectivity will make a huge difference, he says, is in predictive maintenance. Once a system can “sense” or predict that a machine may fail or if a part needs to be replaced, there will be a huge economic impact and cost savings. For instance, he said Siemens uses acoustic sensors to monitor the state of its wind generators. By placing sensors next to the bearings in the machine, they can literally “listen” for squeaky wheels and thus figure out whether a turbine may soon need repair. These analytics let them know when the bearing must be replaced before the turbine shuts down. Of course, the infrastructure will need to connect all of these “things” to the each other and the cloud first. So, there will need to be a lot of system level changes in architectures.

Standards, of course, will be key to getting these architectures to work together. Schneider believes standards development for the IoT will need to be tackled from both horizontal and vertical standpoint. Both generic communication standards and industry specific standards like how to integrate an operating room must evolve.

“We are a firm believer in open standards as a way to build consensus and make things actually work. It’s absolutely critical,” he said.

stan_schneiderStan Schneider is CEO at Real-Time Innovations (RTI), the Industrial Internet of Things communications platform company. RTI is the largest embedded middleware vendor and has an extensive footprint in all areas of the Industrial Internet, including Energy, Medical, Automotive, Transportation, Defense, and Industrial Control.  Stan has published over 50 papers in both academic and industry press. He speaks at events and conferences widely on topics ranging from networked medical devices for patient safety, the future of connected cars, the role of the DDS standard in the IoT, the evolution of power systems, and understanding the various IoT protocols.  Before RTI, Stan managed a large Stanford robotics laboratory, led an embedded communications software team and built data acquisition systems for automotive impact testing.  Stan completed his PhD in Electrical Engineering and Computer Science at Stanford University, and holds a BS and MS from the University of Michigan. He is a graduate of Stanford’s Advanced Management College.

 

Comments Off on The Open Group London 2014 Preview: A Conversation with RTI’s Stan Schneider about the Internet of Things and Healthcare

Filed under architecture, Cloud, digital technologies, Enterprise Architecture, Healthcare, Internet of Things, Open Platform 3.0, Standards, Uncategorized

Business Benefit from Public Data

By Dr. Chris Harding, Director for Interoperability, The Open Group

Public bodies worldwide are making a wealth of information available, and encouraging its commercial exploitation. This sounds like a bonanza for the private sector at the public expense, but entrepreneurs are holding back. A healthy market for products and services that use public-sector information would provide real benefits for everyone. What can we do to bring it about?

Why Governments Give Away Data

The EU directive of 2003 on the reuse of public sector information encourages the Member States to make as much information available for reuse as possible. This directive was revised and strengthened in 2013. The U.S. Open Government Directive of 2009 provides similar encouragement, requiring US government agencies to post at least three high-value data sets online and register them on its data.gov portal. Other countries have taken similar measures to make public data publicly available.

Why are governments doing this? There are two main reasons.

One is that it improves the societies that they serve and the governments themselves. Free availability of information about society and government makes people more effective citizens and makes government more efficient. It illuminates discussion of civic issues, and points a searchlight at corruption.

The second reason is that it has a positive effect on the wealth of nations and their citizens. The EU directive highlights the ability of European companies to exploit the potential of public-sector information, and contribute to economic growth and job creation. Information is not just the currency of democracy. It is also the lubricant of a successful economy.

Success Stories

There are some big success stories.

If you drive a car, you probably use satellite navigation to find your way about, and this may use public-sector information. In the UK, for example, map data that can be used by sat-nav systems is supplied for commercial use by a government agency, the Ordnance Survey.

When you order something over the web for delivery to your house, you often enter a postal code and see most of the address auto-completed by the website. Postcode databases are maintained by national postal authorities, which are generally either government departments or regulated private corporations, and made available by them for commercial use. Here, the information is not directly supporting a market, but is contributing to the sale of a range of unrelated products and services.

The data may not be free. There are commercial arrangements for supply of map and postcode data. But it is available, and is the basis for profitable products and for features that make products more competitive.

The Bonanza that Isn’t

These successes are, so far, few in number. The economic benefits of open government data could be huge. The McKinsey Global Institute estimates a potential of between 3 and 5 trillion dollars annually. Yet the direct impact of Open Data on the EU economy in 2010, seven years after the directive was issued, is estimated by Capgemini at only about 1% of that, although the EU accounts for nearly a quarter of world GDP.

The business benefits to be gained from using map and postcode data are obvious. There are other kinds of public sector data, where the business benefits may be substantial, but they are not easy to see. For example, data is or could be available about public transport schedules and availability, about population densities, characteristics and trends, and about real estate and land use. These are all areas that support substantial business activity, but businesses in these areas seldom make use of public sector information today.

Where are the Products?

Why are entrepreneurs not creating these potentially profitable products and services? There is one obvious reason. The data they are interested in is not always available and, where it is available, it is provided in different ways, and comes in different formats. Instead of a single large market, the entrepreneur sees a number of small markets, none of which is worth tackling. For example, the market for an application that plans public transport journeys across a single town is not big enough to justify substantial investment in product development. An application that could plan journeys across any town in Europe would certainly be worthwhile, but is not possible unless all the towns make this data available in a common format.

Public sector information providers often do not know what value their data has, or understand its applications. Working within tight budgets, they cannot afford to spend large amounts of effort on assembling and publishing data that will not be used. They follow the directives but, without common guidelines, they simply publish whatever is readily to hand, in whatever form it happens to be.

The data that could support viable products is not available everywhere and, where it is available, it comes in different formats. (One that is often used is PDF, which is particularly difficult to process as an information source.) The result is that the cost of product development is high, and the expected return is low.

Where is the Market?

There is a second reason why entrepreneurs hesitate. The shape of the market is unclear. In a mature market, everyone knows who the key players are, understands their motivations, and can predict to some extent how they will behave. The market for products and services based on public sector information is still taking shape. No one is even sure what kinds of organization will take part, or what they will do. How far, for example, will public-sector bodies go in providing free applications? Can large corporations buy future dominance with loss-leader products? Will some unknown company become an overnight success, like Facebook? With these unknowns, the risks are very high.

Finding the Answers

Public sector information providers and standards bodies are tackling these problems. The Open Group participates in SHARE-PSI, the European network for the exchange of experience and ideas around implementing open data policies in the public sector. The experience gained by SHARE-PSI will be used by the World-Wide Web Consortium as a basis for standards and guidelines for publication of public sector information. These standards and guidelines may be used, not just by the public sector, but by not-for-profit bodies and even commercial corporations, many of which have information that they want to make freely available.

The Open Group is making a key contribution by helping to map the shape of the market. It is using the Business Scenario technique from its well-known Enterprise Architecture methodology TOGAF® to identify the kinds of organization that will take part, and their objectives and concerns.

There will be a preview of this on October 22 at The Open Group event in London which will feature a workshop session on Open Public Sector Data. This workshop will look at how Open Data can help business, present a draft of the Business Scenario, and take input from participants to help develop its conclusions.

The developed Business Scenario will be presented at the SHARE-PSI workshop in Lisbon on December 3-4. The theme of this workshop is encouraging open data usage by commercial developers. It will bring a wide variety of stakeholders together to discuss and build the relationship between the public and private sectors. It will also address, through collaboration with the EU LAPSI project, the legal framework for use of open public sector data.

Benefit from Participation!

If you are thinking about publishing or using public-sector data, you can benefit from these workshops by gaining an insight into the way that the market is developing. In the long term, you can influence the common standards and guidelines that are being developed. In the short term, you can find out what is happening and network with others who are interested.

The social and commercial benefits of open public-sector data are not being realized today. They can be realized through a healthy market in products and services that process the data and make it useful to citizens. That market will emerge when public bodies and businesses clearly understand the roles that they can play. Now is the time to develop that understanding and begin to profit from it.

Register for The Open Group London 2014 event at http://www.opengroup.org/london2014/registration.

Find out how to participate in the Lisbon SHARE-PSI workshop at http://www.w3.org/2013/share-psi/workshop/lisbon/#Participation

 

Chris HardingDr. Chris Harding is Director for Interoperability at The Open Group. He has been with The Open Group for more than ten years, and is currently responsible for managing and supporting its work on interoperability, including SOA and interoperability aspects of Cloud Computing, and the Open Platform 3.0™ Forum. He is a member of the BCS, the IEEE and the AEA, and is a certified TOGAF® practitioner.

Comments Off on Business Benefit from Public Data

Filed under big data, Cloud, digital technologies, Enterprise Architecture, Open Platform 3.0, TOGAF®, Uncategorized

The Open Group London 2014: Open Platform 3.0™ Panel Preview with Capgemini’s Ron Tolido

By The Open Group

The third wave of platform technologies is poised to revolutionize how companies do business not only for the next few years but for years to come. At The Open Group London event in October, Open Group CTO Dave Lounsbury will be hosting a panel discussion on how The Open Group Open Platform 3.0™ will affect Enterprise Architectures. Panel speakers include IBM Vice President and CTO of U.S. Federal IMT Andras Szakal and Capgemini Senior Vice President and CTO for Application Services Ron Tolido.

We spoke with Tolido in advance of the event about the progress companies are making in implementing third platform technologies, the challenges facing the industry as Open Platform 3.0 evolves and the call to action he envisions for The Open Group as these technologies take hold in the marketplace.

Below is a transcript of that conversation.

From my perspective, we have to realize: What is the call to action that we should have for ourselves? If we look at the mission of Boundaryless Information Flow™ and the need for open standards to accommodate that, what exactly can The Open Group and any general open standards do to facilitate this next wave in IT? I think it’s nothing less than a revolution. The first platform was the mainframe, the second platform was the PC and now the third platform is anything beyond the PC, so all sorts of different devices, sensors and ways to access information, to deploy solutions and to connect. What does it mean in terms of Boundaryless Information Flow and what is the role of open standards to make that platform succeed and help companies to thrive in such a new world?

That’s the type of call to action I’m envisioning. And I believe there are very few Forums or Work Groups within The Open Group that are not affected by this notion of the third platform. Firstly, I believe an important part of the Open Platform 3.0 Forum’s mission will be to analyze, to understand, the impacts of the third platform, of all those different areas that we’re evolving currently in The Open Group, and, if you like, orchestrate them a bit or be a catalyst in all the working groups and forums.

In a blog you wrote this summer for Capgemini’s CTO Blog you cited third platform technologies as being responsible for a renewed interest in IT as an enabler of business growth. What is it about the Third Platform is driving that interest?

It’s the same type of revolution as we’ve seen with the PC, which was the second platform. A lot of people in business units—through the PC and client/server technologies and Windows and all of these different things—realized that they could create solutions of a whole new order. The second platform meant many more applications, many more uses, much more business value to be achieved and less direct dependence on the central IT department. I think we’re seeing a very similar evolution right now, but the essence of the move is not that it moves us even further away from central IT but it puts the power of technology right in the business. It’s much easier to create solutions. Nowadays, there are many more channels that are so close in business that it takes business people to understand them. This explains also why business people like the third platform so much—it’s the Cloud, it’s mobile, social, it’s big data, all of these are waves that bring technology closer to the business, and are easy to use with very apparent business value that haven’t seen before, certainly not in the PC era. So we’re seeing a next wave, almost a revolution in terms of how easy it is to create solutions and how widely spread these solutions can be. Because again, as with the PC, it’s many more applications yet again and many more potential uses that can be connected through these applications, so that’s the very nature of the revolution and that also explains why business people like the third platform so much. So what people say to me these days on the business side is ‘We love IT, it’s just these bloody IT people that are the problem.’

Due to the complexities of building the next wave of platform computing, do you think that we may hit a point of fatigue as companies begin to tackle everything that is involved in creating that platform and making it work together?

The way I see it, that’s still the work of the IT community and the Enterprise Architect and the platform designer. It’s the very nature of the platform is that it’s attractive to use it, not to build it. The very nature of the platform is to connect to it and launch from it, but building the platform is an entirely different story. I think it requires platform designers and Enterprise Architects, if you like, and people to do the plumbing and do the architecting and the design underneath. But the real nature of the platform is to use it and to build upon it rather than to create it. So the happy view is that the “business people” don’t have to construct this.

I do believe, by the way, that many of the people in The Open Group will be on the side of the builders. They’re supposed to like complexity and like reducing it, so if we do it right the users of the platform will not notice this effort. It’s the same with the Cloud—the problem with the Cloud nowadays is that many people are tempted to run their own clouds, their own technologies, and before they know it, they only have additional complexity on their agenda, rather than reduced, because of the Cloud. It’s the same with the third platform—it’s a foundation which is almost a no-brainer to do business upon, for the next generation of business models. But if we do it wrong, we only have additional complexity on our hands, and we give IT a bad name yet again. We don’t want to do that.

What are Capgemini customers struggling with the most in terms of adopting these new technologies and putting together an Open Platform 3.0?

What you currently see—and it’s not always good to look at history—but if you look at the emergence of the second platform, the PC, of course there were years in which central IT said ‘nobody needs a PC, we can do it all on the mainframe,’ and they just didn’t believe it and business people just started to do it themselves. And for years, we created a mess as a result of it, and we’re still picking up some of the pieces of that situation. The question for IT people, in particular, is to understand how to find this new rhythm, how to adopt the dynamics of this third platform while dealing with all the complexity of the legacy platform that’s already there. I think if we are able to accelerate creating such a platform—and I think The Open Group will be very critical there—what exactly should be in the third platform, what type of services should you be developing, how would these services interact, could we create some set of open standards that the industry could align to so that we don’t have to do too much work in integrating all that stuff. If we, as The Open Group, can create that industry momentum, that, at least, would narrow the gap between business and IT that we currently see. Right now IT’s very clearly not able to deliver on the promise because they have their hands full with surviving the existing IT landscape, so unless they do something about simplifying it on the one hand and bridging that old world with the new one, they might still be very unpopular in the forthcoming years. That’s not what you want as an IT person—you want to enable business and new business. But I don’t think we’ve been very effective with that for the past ten years as an industry in general, so that’s a big thing that we have to deal with, bridging the old world with the new world. But anything we can do to accelerate and simplify that job from The Open Group would be great, and I think that’s the very essence of where our actions would be.

What are some of the things that The Open Group, in particular, can do to help affect these changes?

To me it’s still in the evangelization phase. Sooner or later people have to buy it and say ‘We get it, we want it, give me access to the third platform.’ Then the question will be how to accelerate building such an actual platform. So the big question is: What does such a platform look like? What types of services would you find on such a platform? For example, mobility services, data services, integration services, management services, development services, all of that. What would that look like in a typical Platform 3.0? Maybe even define a catalog of services that you would find in the platform. Then, of course, if you could use such a catalog or shopping list, if you like, to reach out to the technology suppliers of this world and convince them to pick that up and gear around these definitions—that would facilitate such a platform. Also maybe the architectural roadmap—so what would an architecture look like and what would be the typical five ways of getting there? We have to start with your local situation, so probably also several design cases would be helpful, so there’s an architectural dimension here.

Also, in terms of competencies, what type of competencies will we need in the near future to be able to supply these types of services to the business? That’s, again, very new—in this case, IT Specialist Certification and Architect Certification. These groups also need to think about what are the new competencies inherent in the third platform and how does it affect things like certification criteria and competency profiles?

In other areas, if you look at TOGAF®, and Open Group standard, is it really still suitable in fast paced world of the third platform or do we need a third platform version of TOGAF? With Security, for example, there are so many users, so many connections, and the activities of the former Jericho Forum seem like child’s play compared to what you will see around the third platform, so there’s no Forum or Work Group that’s not affected by this Open Platform 3.0 emerging.

With Open Platform 3.0 touching pretty much every aspect of technology and The Open Group, how do you tackle that? Do you have just an umbrella group for everything or look at it through the lens of TOGAF or security or the IT Specialist? How do you attack something so large?

It’s exactly what you just said. It’s fundamentally my belief that we need to do both of these two things. First, we need a catalyst forum, which I would argue is the Open Platform 3.0 Forum, which would be the catalyst platform, the orchestration platform if you like, that would do the overall definitions, the call to action. They’ve already been doing the business scenarios—they set the scene. Then it would be up to this Forum to reach out to all the other Forums and Work Groups to discuss impact and make sure it stays aligned, so here we have an orchestration function of the Open Platform 3.0 Forum. Then, very obviously, all the other Work Groups and Forums need to pick it up and do their own stuff because you cannot aspire to do all of this with one and the same forum because it’s so wide, it’s so diverse. You need to do both.

The Open Platform 3.0 Forum has been working for a year and a half now. What are some of the things the Forum has accomplished thus far?

They’ve been particularly working on some of the key definitions and some of the business scenarios. I would say in order to create an awareness of Open Platform 3.0 in terms of the business value and the definitions, they’ve done a very good job. Next, there needs to be a call to action to get everybody mobilized and setting tangible steps toward the Platform 3.0. I think that’s currently where we are, so that’s good timing, I believe, in terms of what the forum has achieved so far.

Returning to the mission of The Open Group, given all of the awareness we have created, what does it all mean in terms of Boundaryless Information Flow and how does it affect the Forums and Work Groups in The Open Group? That’s what we need to do now.

What are some of the biggest challenges that you see facing adoption of Open Platform 3.0 and standards for that platform?

They are relatively immature technologies. For example, with the Cloud you see a lot of players, a lot of technology providers being quite reluctant to standardize. Some of them are very open about it and are like ‘Right now we are in a niche, and we’re having a lot of fun ourselves, so why open it up right now?’ The movement would be more pressure from the business side saying ‘We want to use your technology but only if you align with some of these emerging standards.’ That would do it or certainly help. This, of course, is what makes The Open Group as powerful as not only technology providers, but also businesses, the enterprises involved and end users of technology. If they work together and created something to mobilize technology providers, that would certainly be a breakthrough, but these are immature technologies and, as I said, with some of these technology providers, it seems more important to them to be a niche player for now and create their own market rather than standardizing on something that their competitors could be on as well.

So this is a sign of a relatively immature industry because every industry that starts to mature around certain topics begins to work around open standards. The more mature we grow in mastering the understanding of the Open Platform 3.0, the more you will see the need for standards arise. It’s all a matter of timing so it’s not so strange that in the past year and a half it’s been very difficult to even discuss standards in this area. But I think we’re entering that era really soon, so it seems to be good timing to discuss it. That’s one important limiting area; I think the providers are not necessarily waiting for it or committed to it.

Secondly, of course, this is a whole next generation of technologies. With all new generations of technologies there are always generation gaps and people in denial or who just don’t feel up to picking it up again or maybe they lack the energy to pick up a new wave of technology and they’re like ‘Why can’t I stay in what I’ve mastered?’ All very understandable. I would call that a very typical IT generation gap that occurs when we see the next generation of IT emerge—sooner or later you get a generation gap, as well. Which has nothing to do with physical age, by the way.

With all these technologies converging so quickly, that gap is going to have to close quickly this time around isn’t it?

Well, there are still mainframes around, so you could argue that there will be two or even three speeds of IT sooner or later. A very stable, robust and predictable legacy environment could even be the first platform that’s more mainframe-oriented, like you see today. A second wave would be that PC workstation, client/server, Internet-based IT landscape, and it has a certain base and certain dynamics. Then you have this third phase, which is the new platform, that is more dynamic and volatile and much more diverse. You could argue that there might be within an organization multiple speeds of IT, multiple speeds of architectures, multi-speed solutioning, and why not choose your own speed?

It probably takes a decade or more to really move forward for many enterprises.

It’s not going as quickly as the Gartners of this world typically thinks it is—in practice we all know it takes longer. So I don’t see any reason why certain people wouldn’t certainly choose deliberately to stay in second gear and don’t go to third gear simply because they think it’s challenging to be there, which is perfectly sound to me and it would bring a lot of work in many years to companies.

That’s an interesting concept because start-ups can easily begin on a new platform but if you’re a company that has been around for a long time and you have existing legacy systems from the mainframe or PC era, those are things that you have to maintain. How do you tackle that as well?

That’s a given in big enterprises. Not everybody can be a disruptive start up. Maybe we all think that we should be like that but it’s not the case in real life. In real life, we have to deal with enterprise systems and enterprise processes and all of them might be very vulnerable to this new wave of challenges. Certainly enterprises can be disruptive themselves if they do it right, but there are always different dynamics, and, as I said, we still have mainframes, as well, even though we declared their ending quite some time ago. The same will happen, of course, to PC-based IT landscapes. It will take a very long time and will take very skilled hands and minds to keep it going and to simplify.

Having said that, you could argue that some new players in the market obviously have the advantage of not having to deal with that and could possibly benefit from a first-mover advantage where existing enterprises have to juggle several balls at the same time. Maybe that’s more difficult, but of course enterprises are enterprises for a good reason—they are big and holistic and mighty, and they might be able to do things that start-ups simply can’t do. But it’s a very unpredictable world, as we all realize, and the third platform brings a lot of disruptiveness.

What’s your perspective on how the Internet of Things will affect all of this?

It’s part of the third platform of course, and it’s something Andras Szakal will be addressing as well. There’s much more coming, both at the input sites, everything is becoming a sensor essentially to where even your wallpaper or paint is a sensor, but on the other hand, in terms of devices that we use to communicate or get information—smart things that whisper in your ears or whatever we’ll have in the coming years—is clearly part of this Platform 3.0 wave that we’ll have as we move away from the PC and the workstation, and there’s a whole bunch of new technologies around to replace it. The Internet of Things is clearly part of it, and we’ll need open standards as well because there are so many different things and devices, and if you don’t create the right standards and platform services to deal with it, it will be a mess. It’s an integral part of the Platform 3.0 wave that we’re seeing.

What is the Open Platform 3.0 Forum going to be working on over the next few months?

Understanding what this Open Platform 3.0 actually means—I think the work we’ve seen so far in the Forum really sets the way in terms of what is it and definitions are growing. Andras will be adding his notion of the Internet of Things and looking at definitions of what is it exactly. Many people already intuitively have an image of it.

The second will be how we deliver value to the business—so the business scenarios are a crucial thing to consider to see how applicable they are, how relevant they are to enterprises. The next thing to do will pertain to work that still needs to be done in The Open Group, as well. What would a new Open Platform 3.0 architecture look like? What are the platform services? What are the ones we can start working on right now? What are the most important business scenarios and what are the platform services that they will require? So architectural impacts, skills impacts, security impacts—as I said, there are very few areas in IT that are not touched by it. Even the new IT4IT Forum that will be launched in October, which is all about methodologies and lifecycle, will need to consider Agile, DevOps-related methodologies because that’s the rhythm and the pace that we’ve got to expect in this third platform. So the rhythm of the working group—definitions, business scenarios and then you start to thinking about what does the platform consist of, what type of services do I need to create to support it and hopefully by then we’ll have some open standards to help accelerate that thinking to help enterprises set a course for themselves. That’s our mission as The Open Group to help facilitate that.

Tolido-RonRon Tolido is Senior Vice President and Chief Technology Officer of Application Services Continental Europe, Capgemini. He is also a Director on the board of The Open Group and blogger for Capgemini’s multiple award-winning CTO blog, as well as the lead author of Capgemini’s TechnoVision and the global Application Landscape Reports. As a noted Digital Transformation ambassador, Tolido speaks and writes about IT strategy, innovation, applications and architecture. Based in the Netherlands, Mr. Tolido currently takes interest in apps rationalization, Cloud, enterprise mobility, the power of open, Slow Tech, process technologies, the Internet of Things, Design Thinking and – above all – radical simplification.

 

 

Comments Off on The Open Group London 2014: Open Platform 3.0™ Panel Preview with Capgemini’s Ron Tolido

Filed under architecture, Boundaryless Information Flow™, Certifications, Cloud, digital technologies, Enterprise Architecture, Future Technologies, Information security, Internet of Things, Open Platform 3.0, Security, Service Oriented Architecture, Standards, TOGAF®, Uncategorized